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ABSTRACT: An automated multitrajectory optimization platform with continuous online infrared (IR) monitoring is
presented. The production rate of a Paal−Knorr reaction is maximized within a constrained temperature and residence time
design space. The automated platform utilizes a microreactor system to carry out optimizations with low material requirements
and implements a micro IR flow cell for continuous online monitoring of reaction conversion. The approach to steady state at
each set of reaction conditions is assessed continuously before the objective function is evaluated and reactor conditions move to
the next set point. Several optimization algorithms are tested for their performance on a complex objective terrain. Each function
comes to agreement on the optimal conditions but requires a significantly different number of experiments to reach the final
conditions. Additionally, multiple objective functions are compared to analyze the trade-off between production rate and
conversion.

■ INTRODUCTION

The optimization of a reaction process is often expensive,
requiring significant investments in time and material.1,2

Microreactor systems carry out these optimizations at reduced
costs, due to low material requirements and waste generation.3,4

Additionally, the reduced channel widths allow for reactions
that would be mass transfer limited at larger scales to be
kinetically controlled,5,6 and this enhanced reaction rate often
produces significantly higher reaction yields.7 The use of silicon
devices also enhances heat transfer, allowing for tight control of
reaction temperature and reducing internal temperature
gradients that occur in energetic reactions at larger scales.8−10

Furthermore, these devices can be operated at high temperature
and pressure, allowing access to reaction conditions not
achievable in batch.11,12 These advantages enable a more
intrinsic understanding of the reaction under investigation and
have found application in a number of industries.13−15

Moreover, the known fluid-flow characteristics combined with
controlled mass and heat transfer effects enable scaling of the
optimum conditions to larger production systems.16,17 Lastly, as
these flow experiments are performed sequentially, they can
progress towards the optimal conditions using information
from previous experiments, so that fewer unnecessary and
unproductive experiments are performed that do not show
improvement over the current conditions.
In an effort to utilize the advantages of the microscale, our

group has recently described a microreactor system to perform
single-trajectory automated optimization of reactions in a
multivariable design space.17,18 This optimization platform
assessed each reaction once by analyzing a reaction sample by
HPLC after a fixed number of residence times. In the trajectory
method used, the algorithm was designed to move from an
initial condition along a single path toward the optimum.
Intelligently updating reaction conditions based on inline
analytical techniques has been shown to significantly improve

optimization performance.19 However, in more complex
reaction schemes, the terrain of the objective function will
not point so directly to the optimal conditions. Herein we
describe an expanded multitrajectory optimization system,
allowing for the optimization of such a complex reaction
system. This analysis takes into account the changing behavior
of the objective function by reanalyzing the objective terrain
and changing the search direction during the optimization.
This work focuses on the overall approach used to conduct

reaction optimizations, regardless of the reaction or the actual
objective function. Thus, it would be possible to interchange
objectives or even reactions using the same methodology. A
well-known method that is often used to accomplish this is
design of experiments (DoE); however, this approach assumes
that the objective function can be well modeled over its entirety
by a low-order function. Here, no such assumption is necessary,
and this approach is intended to be extendable to more
complex systems where design of experiments would fail to
adequately capture the nature of the objective function.
Most previous studies have monitored performance only

intermittently and at a single wavelength. In this example, the
reaction progression was analyzed quantitatively via online
ATR-FTIR using Mettler Toledo’s ReactIR microflow cell,
which has a 51-μL flow cell equipped with a multipass diamond
window to allow for continuous monitoring of the mid-IR
range.20 This analytical technique has previously been used in
characterizing system dispersion and chromatographic effects,
reaction screening, and monitoring reactor failures, though
none of the data was used to quantitatively assess reaction
progress, much less investigate reaction kinetics.21,22 Addition-
ally, use of online IR measurements in process optimization has
typically been done by testing a few settings of process
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variables, changing one at a time, and observing the relative size
of the desired peak, without quantitative analysis or
investigation of parameter interactions.23

The IR microflow cell enables monitoring of the reaction’s
approach to steady state, ensuring that steady-state data is used
for analysis. Thus, the next set of reaction conditions can begin
as soon as the previous steady state had been reached and
assessed, rather than waiting a fixed number of residence times
and assuming that steady state has occurred, as has been done
previously.18 Moreover, this analysis can be performed directly
inline at reaction concentrations by using the entire reactor
effluent, rather than requiring significant dilution of only a small
reaction sample, as with HPLC sampling, enabling better
characterization of system fluctuations and nondestructive
analysis between unit operations. It would also be possible to
monitor the reaction with online IR in the presence of
unknown reaction species (intermediates or byproducts);
however, as with any measurement technique, each reaction
species would have to be isolated and calibrated to be certain of
quantitative analysis. In addition, the impact of unknown
species is dependent on the spectrum analysis technique used.
For calibration to a peak height, other species are less likely to
have adverse effect unless they contain an overlapping peak.
Conversely, if a chemometric principle component analysis is
used, any significant uncalibrated impurity can result in altering
the spectrum decomposition, preventing quantification. For
these reactions, inline analysis would have to be done with
other methods such as HPLC, as has been demonstrated
previously.18

A Paal−Knorr reaction of 2,5-hexanedione (1) and ethanol-
amine (2) in dimethyl sulfoxide (DMSO) (Scheme 1), where

both the first and second reaction steps affect the overall rate,
leads to a more complex conversion profile, although the exact
structure of the reaction intermediate is still under some
debate.24,25 At short reaction times the initial second-order step
significantly affects the overall rate of product formation, which
leads to a tapered plateau in the reaction production rate. The
Paal−Knorr reaction is widely used to form pyrrole rings in
synthetic26,27 and biological molecules.28,29 Beyond the
mechanism (Scheme 2), the Paal−Knorr reaction has been
studied to create libraries30 and was recently the subject of an
optimization and scale-up study.31 However, more standard
one-at-a-time and DoE methods were used to optimize
conversion via offline GC analysis after quench and dilution.
While it is possible to determine conversion on the basis of

the advanced chemometric analysis of the IR spectrum, reaction
conversion of the Paal−Knorr reaction could be monitored
simply by calibration to a single peak height normalized to a
single point baseline. Figure 1 shows the IR spectrum of the

main reaction species, enumerating the main peaks that could
be easily followed to assess reaction conversion by monitoring
hexanedione consumption and product formation.
Other works have investigated the use of various online

analysis techniques to continuously analyze the components of
flow systems. For example, Mechtilde et al.35 have shown that
they can use an external Raman probe to scan different
residence times down the reactor length. While feedback and
optimization are mentioned as possible applications of this
technique, no details or results from such are given. The
Kazarian group36 has demonstrated the ability to generate 8 fps
IR movies of the entire flow path, which has the potential to be
a powerful tool. However, at present this approach still has
significant challenges that must be overcome. The small size of
the array, approximately a few millimeters on a side, limits the
residence times that can be monitored. Also, the use of paraffin
walls limits applicable chemistries and temperature range.
Furthermore, having the IR detector as the reactor base
prevents the decoupling of reactor and measuring temperatures,
requiring that calibrations be a function of not only
concentration but also temperature.
Herein, we present a microreaction platform and compare

the performance of several automated optimization algorithms
used to optimize multiple objective functions related to the
Paal−Knorr reaction. This setup and these methods aim to
target issues of high cost and difficulty typically involved in
finding optimal conditions in a complex reaction system.

■ EXPERIMENTAL SECTION

The microfluidic system used is shown schematically in Figure
2, including a schematic of the silicon microreactor. Flow was
achieved with two Harvard syringe pumps (PHD 2000), which
were controlled via daisy-chained RS-232 communications to a
Dell (Optiplex 960) computer. These syringe pumps were
connected to a silicon microreactor with a 232-μL reaction
zone and a cooled inlet/outlet zone, which allows the reactant
streams to fully mix before reaction occurs and thermally
quenches the reaction.37,38 In addition, due to the high heat
transfer coefficient of silicon, the temperature of the reaction
zone could be quickly changed between set points and the fluid
stream rapidly reached the desired temperature in both reaction
and quench zones.
The temperature of the reaction zone was controlled with an

Omega (CN9311) controller and an Omega (CSS-01235/120
V) heating cartridge. This controller was connected through an
RS-232 cable to the computer to allow programming the
temperature set point and reading the measured reactor
temperature. The microreactor inlet and outlet region was
maintained at room temperature with a recirculating water
bath. A Mettler Toledo ReactIR iC 10 outfitted with a DiComp
ATR 51-μL flow cell was used for continuous inline
monitoring, averaging 167 spectra scans once per minute and
saving to an Excel file. The flow cell head was maintained at 35
°C so that spectra were always collected at the same
temperature, removing the requirement to account for
temperature effects in the IR spectrum. Labview software

Scheme 1. Paal−Knorr reaction.32,33

Scheme 2. Paal−Knorr reaction mechanism.25,28,34
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(version 8.5.1) on the computer communicated with the
syringe pumps and temperature controller and read the IR
Excel export files to determine reaction conversion based on
calibrations to peak heights. Matlab scripts (version 2010b)
within Labview ran the optimization algorithms to determine
reaction set points.

■ METHOD
Two optimization algorithms, steepest descent and conjugate
gradient,39−41 were used to vary reaction temperature, T, and
residence time, τ, to maximize the objective function, J,

τ
= = ∝⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
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max

conversion
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which is proportional to the reaction production rate. The
search algorithms were carried out by performing a full-factorial
DoE around a starting point, then moving along a trajectory in
order to maximize the objective function. The process was then
repeated, setting the conditions that maximized the objective
function as the new starting point. For the steepest descent
algorithm, at each new DoE a new search direction is calculated
based solely upon that DoE, which allows the search direction
to rapidly change between trajectories. However, for conjugate
gradient, the new search direction is a weighted sum of the
previous search direction and what would be the new steepest
descent search direction. This prevents large shifts in the search

direction, which makes the conjugate gradient less likely to
become trapped by more difficult terrain.39

The optimization was performed by first inputting initial
conditions, trajectory and DoE step sizes, and constraints on
allowable trajectory conditions. The Matlab optimization
algorithm was then started. At each set point, reactor
temperature was deemed to be equilibrated once within 1 °C
of set point, although the temperature controller generally
maintained within 0.2 °C of set point. After equilibration, a
minimum flush volume was completed to ensure that the
previous steady-state reactor effluent had exited the IR flow cell.
The IR data was then continuously monitored until the
reaction reached steady state, at which point the objective
function was calculated. The algorithm performed an initial
DoE around the specified starting location and fit a linear
response surface to the objective function. From this surface,
the gradient was found and the ith search direction, Si, was
calculated by either the steepest descent (eqs 2a, 2b) or the
Fletcher−Reeves conjugate gradient method (eqs 3a−3c).39
The reaction conditions then stepped along this trajectory until
the algorithm either terminated or contracted.

= ∇S J x( )1 1 (2a)
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Termination was triggered if one of the following occurred:
(a) by reaching an experimental condition at which all
constraints were active, i.e. at a corner of the constrained
design space, (b) reaching the maximum number of experi-
ments, (c) reaching a constraint that would cause stepping
along the constraint boundary to reduce step size below a set
minimum, or (d) when the last objective function calculated
was less than or equal to 95% of the maximum objective
function value found along the trajectory. This last condition
was set at 95% rather than 100% to prevent small decreases in
the objective function due to experimental error within
relatively flat regions from causing termination.
Contraction was triggered if the objective function decreased

with the first step beyond the DoE, indicating that the optimum

Figure 1. IR spectrum of the Paal−Knorr reaction species and their corresponding moiety in DMSO after solvent subtraction.

Figure 2. Automation system schematic. Solid lines represent fluid
flow and dashed lines represent data flow.

Organic Process Research & Development Article

dx.doi.org/10.1021/op300099x | Org. Process Res. Dev. 2012, 16, 1409−14151411



was very near to the initial condition. Once the trajectory
optimum was found, this procedure was then repeated
beginning at the trajectory optimum unless contraction
occurred and the maximum objective function value found
was along the trajectory rather than at a DoE corner within the
design space.
The step sizes for the DoE were set to ±2 °C and ±1 min

and the trajectory step size was initially set to 3 units
(normalized °C and min). These sizes allowed for capturing
local variations, which became especially important in the
neighborhood of the objective plateau, while allowing for
enough change in experimental conditions to have only a small
effect due to experimental variances. However, if the trajectory
optimum is far from the initial conditions, having a fixed step
size on the trajectories can lead to performing experiments at a
large number of set points. Thus, an Armijo-type line search40

was implemented in another optimization run, replacing the
previous contraction algorithm. The Armijo algorithm
determines the step size, Δx, along the search trajectory by
the formula:

αΔ = − Δβx x( 1) n
max (4)

Here Δxmax is the maximum desired step size, set here to 16
units, and α is a number between 0 and 1, set here to 0.5. While
moving along the trajectory, n and β are 0 until a step is not
accepted, by triggering a termination criterion. Then Armijo
contraction is performed around the current trajectory
maximum by setting β to 0 or 1, based upon which interval
around the maximum should contain the optimum by the
bisection or quadratic interpolation methods, and incrementing
the value of n by 1 until the step is accepted or the minimum
step size is reached, completing termination.

■ RESULTS AND DISCUSSION

A Paal−Knorr reaction (Scheme 1) was used to show the
performance of this multitrajectory automated optimization
platform within the constraints 30 °C ≤ T ≤ 130 °C and 2 min
≤ τ ≤ 30 min on the trajectory points and DoE center points.
This maximum temperature was set for the reaction due to the
use of a polycarbonate reactor cover. As polycarbonate has a
glass transition temperature of 150 °C, a maximum temperature
limit was set slightly lower. Along the same lines, a minimum
residence time of 2 min was set because a faster pumping rate
would cause the system pressure drop to exceed the capabilities
of the Harvard syringe pumps. As the overall goal was not
simply to show what conditions led to maximizing the objective
function, but a total methodology for performing the
optimization, constraint handling was deemed relevant, since
no real parameter space is without limit. However, as it was
possible to replace the polycarbonate cap with pyrex, a further
optimization was run to investigate higher temperatures where
decomposition and vaporization became issues.
Results for the optimization of the objective function (eq 1)

with constant step-size trajectories for the steepest descent and
conjugate gradient methods can be seen in a and b in Figure 3,
respectively. Additionally, results from the combination of the
conjugate gradient and the Armijo algorithms can be seen in
Figure 3c. In each figure, values of the objective function are
given by the color bar at right, control variable boundaries are
denoted by dashed red lines, initial conditions are boxed in
black at the bottom left, optimal conditions are boxed in red at
the top left, and the initial DoE of each trajectory is numbered.

Full tables of conditions, conversion, and objective function
values are given in the Supporting Information, in additional to
the model used to provide the plot contours. The initial
conditions of 40 °C and 10 min residence time can be seen in
the box at the lower left in the figures. Both search-direction
algorithms initially moved rapidly toward increasing residence
time at low temperature. The steepest descent method begins
to zigzag (Figure 3a), moving slowly upwards in temperature
with large changes in residence time in a low-efficiency manner
that is typical of this algorithm type when moving along
ridges.39 This behavior becomes worse in trajectories 4−9 as
the sides of the ridge in the objective function become steeper,
forcing the trajectories to take only a few steps before moving
off the plateau and terminating. Only by happening to have a

Figure 3. Maximization of the production rate of the Paal−Knorr
reaction (Scheme 1) with different optimization strategies. Values of
the objective function are given by the color bar at right. Center point
control variable boundaries are denoted by dashed red lines. The initial
conditions are boxed in black at the bottom left, and the optimum is
boxed in red at the top left. The initial DoE of each trajectory is
numbered. (a) Steepest descent method. (b) Conjugate gradient
method. (c) Armijo conjugate gradient method.
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point near the very center of the plateau at a particular
temperature would the trajectory point enough toward
increasing temperature to end this pattern. Trajectory 5 nearly
accomplished this, but the large number of points beyond the
optimum indicates that the objective decreased slightly beyond
it, but stayed within 95% for several points before terminating.
Had this trajectory been slightly more in the positive
temperature direction, as in trajectory 10, it would have
significantly decreased the total number of experiments.
The conjugate gradient algorithm approaches the optimum

much more efficiently because the algorithm cannot double
back upon itself the way that steepest descent can. In Figure 3b,
trajectory 2 appears to double back, but compared to Figure 3a,
this behavior is much less pronounced. Trajectory 3 is then very
short for the same reason, where the gradient of the DoE points
largely towards increasing residence time but the algorithm
prevents such a large change in the search direction. Trajectory
4 then continues to adjust the search direction, resulting in a
search that bypasses the troubles of steepest descent.
The comparison of b and c of Figure 3 reveals that further

efficiency gains are realized by the implementation of the
Armijo line search, which significantly reduces the number of
set points necessary along the trajectories. Additionally, the
ability of the Armijo algorithm to find a better trajectory
optimum ensures that the search directions of the conjugate
gradient more correctly points toward the design space
optimum, resulting in fewer trajectories.
Ultimately, all three algorithms contracted along the upper

temperature boundary and reached approximately the same

optimum: T = 130 °C and τ = 4.49 min for steepest descent, T
= 130 °C and τ = 4.36 min for standard conjugate gradient, and
T = 130 °C and τ = 4.36 min for Armijo conjugate gradient.
However, the Armijo conjugate gradient method converged at a
significantly faster rate, requiring only 38 experimental set
points (i.e., individual experiments) in four trajectories, while
the standard conjugate gradient required 75 set points in six
trajectories, still significantly outpacing the steepest descent,
which required 126 set points in 12 trajectories.
The performances of the algorithms are summarized in Table

1 and Figure 4. The points toward the end of the plots are the
final optimization along the upper temperature constraint.
Because the constraints were on the DoE center and trajectory
points but not on the DoE factorial points, some of the points
in the last two DoE runs for each method were beyond the
allowed space. Thus, these points run at higher temperatures
show higher conversion and thus higher objective function
values than the optimum, but were not valid optimal points.
The above optimizations of production rate resulted,

however, in conversions of only approximately 40%. To
attempt to find an optimum at a more desirable conversion,
another optimization was performed using a new objective
function (eq 5) with a quadratic loss function, a standard
method to impose soft inequality constraints,40 to penalize
conversions of less than 85%.

τ
= − − +J

X
Xmax (max(0, 0.85 )) 0.85penalty

2 2
(5)

Table 1. Summary of optimization algorithm performance

optimum

method number of trajectories number of set points total volume (mL) T (°C) τ (min) X X/τ Jpenalty

Steepest Descent 12 126 44.6 130 4.49 0.420 0.094 0.632
Conjugate Gradient 6 75 25.2 130 4.36 0.385 0.088 0.594
Armijo Conjugate Gradient 4 38 13.9 130 4.36 0.387 0.089 0.597
Penalized Armijo Conjugate Gradient 2 17 6.5 130 12.36 0.807 0.065 0.786

130 30.00 0.935 0.031 0.754
Optimization Above 130 °C 4 48 17.0 212 6.00 0.764 0.127 0.843

Figure 4. Objective function value at each set point for steepest descent (diamond), conjugate gradient (circle), and Armijo conjugate gradient
(triangle). The optimum for each algorithm is boxed.
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This optimization, shown in Figure 5 was performed using
the Armijo conjugate gradient algorithm with the optimum

from the previous optimization as the initial conditions and ran
along the upper temperature boundary of 130 °C. While during
the process of the optimization a maximum conversion of 94%
was found, the maximum of the penalized objective function
was found to be 0.786 at T = 130 °C and τ = 12.36 min, where
the conversion was 81% and X/τ was 0.065. Therefore, there is
a large trade-off between conversion and production rate.
Ultimately, an economic analysis on the full process, including
separation costs, would be necessary to determine the desired
weighting and limits on the two objectives to use for a final
optimization.
As the optimizations performed all found an optimum at

which the upper temperature constraint was active, a final
optimization was run where the maximum allowable temper-
ature was set only by the ability of the controller to heat the
reactor. The results of this optimization utilizing the same
penalized objective function with the Armijo conjugate gradient
method are given in Figure 6, which found an optimum at 212
°C and 6.00 min residence time with objective value of 0.843,
corresponding to a conversion of 76.4%. Here, four trajectories
are run with a final DoE around the optimum to confirm that
the center point of the DoE has an objective value above that
found at the corners. The rapid drop in conversion above 212
°C is due to the vaporization of a large portion of the reaction
mixture, causing a transition to annular flow with significantly
reduced residence time. This is further compounded by the
partial breakdown of DMSO into significantly lower boiling
components. While additional backpressure would allow for the
reaction to reach somewhat higher temperatures before boiling,
the increased DMSO decomposition limits the utility of this
approach.
Reaction stoichiometry was not investigated here, because it

would result in a trivial optimization where increasing
concentration leads to increased reaction rate, as shown by
Nieuwland et al.31 Comparing these two approaches, their
approach contained 58 experiments to model the reaction with
a resulting leave-one-out cross-validation value of approx-
imately 70%. Here, the final constrained optimization run

required only 38 set points to find the optimal production rate
and the overall reaction model generated clustered significantly
closer to the experimental data (cf. Figure S5, SI).
Because this reaction is relatively well understood, it is

known from modeling that the objective is convex within the
parameter space, so that regardless of initial conditions, the
same optimum will be found. The same initial conditions were
used for each search technique to aid in the ability to
distinguish their performances. However, for more complex
systems, multiple initial conditions may be necessary to test if
there are multiple local optima. While global optimization
techniques do exist, they tend to require significantly more
evaluations of the objective (i.e., experiments) than local search
techniques, while still being unable to guarantee that a true
global optimum is found.
The above examples demonstrate that the automated system

and algorithms can efficiently optimize a range of objectives in a
reaction system, including those that offer more complex
terrains. The platform is able to perform several sequential
experiments with minimal operator intervention. Thus, by
intelligently choosing experimental conditions, controlling and
monitoring reaction temperature and residence time, and
analyzing reactor effluent concentration, not only does the
automated microsystem save significant reagents during the
optimizations, but also produces significant time savings for the
experimenter.

■ CONCLUSIONS
An automated microreactor system combined with continuous
online IR analysis has enabled evaluation of multitrajectory
optimization strategies for maximizing the production rate of a
Pall-Knorr reaction example. The conjugate gradient algorithm
was significantly more efficient than the steepest descent
method due to the shape of the objective function. Additionally,
the incorporation of an Armijo-type line-search algorithm
further increased the optimization efficiency. The use of
continuous online analysis allowed several measurements of
reactor effluent concentrations within a short time, ensuring
that each experiment had reached steady state within a set
degree of error before moving on to the next set of conditions,
allowing for dynamic experiment duration. Thus, each
experiment was only as long as necessary, which, paired with

Figure 5. Penalized Armijo conjugate gradient method. The
conversion (×) and objective function value (○) at each set point
are shown. Values of the objective function are also given by the color
bar at right. Center point control variable boundaries are denoted by
dashed red lines. The initial conditions are boxed in black at the top
left, and the optimum is boxed in red at the top center. The initial DoE
of each trajectory is numbered.

Figure 6. Penalized Armijo conjugate gradient method above 130 °C.
Values of the objective function are given by the color bar at right.
Center point control variable boundaries are denoted by dashed red
lines. The initial conditions are boxed in black at the bottom left, and
the optimum is boxed in red at the top left. The initial DoE of each
trajectory is numbered.
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a microreaction system, minimized reagent consumption and
further increased system efficiency. Similar techniques could be
envisioned for the optimization of more complex reaction
systems or those with multiple unit operations, which could
incorporate continuous inline IR to nondestructively analyze
the output of each step. As there were no significant side
reactions, selectivity and impurity profile could not be
investigated in this study. However, investigating such aims
for other reactions would again simply require interchanging
the appropriate objective function to take into account the
concentration of one or more side products and to penalize for
their formation.
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